math_knowledge_mapping/.history/math1_20251015144934.json
2025-10-15 15:15:58 +08:00

1815 lines
57 KiB
JSON
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"knowledge": [
{
"id": "K1-1-01",
"name": "集合",
"type": "概念",
"definition": "把一些元素组成的总体叫做集合(set),简称为集。",
"prerequisite": []
},
{
"id": "K1-1-02",
"name": "元素",
"type": "概念",
"definition": "组成集合的研究对象统称为元素(element)。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-1-03",
"name": "集合元素的特性",
"type": "概念",
"definition": "集合的元素具有确定性、互异性(不重复出现)。",
"prerequisite": [
"K1-1-01",
"K1-1-02"
]
},
{
"id": "K1-1-04",
"name": "元素与集合的关系",
"type": "概念",
"definition": "如果a是集合A的元素就说a属于集合A记作a ∈ A如果a不是集合A中的元素就说a不属于集合A记作a ∉ A。",
"prerequisite": [
"K1-1-01",
"K1-1-02"
]
},
{
"id": "K1-1-05",
"name": "常用数集",
"type": "概念",
"definition": "非负整数集(自然数集)记作N正整数集记作N*或N+整数集记作Z有理数集记作Q实数集记作R。",
"prerequisite": []
},
{
"id": "K1-1-06",
"name": "列举法",
"type": "概念",
"definition": "把集合的所有元素一一列举出来,并用花括号“{ }”括起来表示集合的方法。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-1-07",
"name": "描述法",
"type": "概念",
"definition": "把集合中所有具有共同特征P(x)的元素x所组成的集合表示为{x ∈ A | P(x)}的方法。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-2-01",
"name": "子集",
"type": "概念",
"definition": "对于两个集合A, B如果集合A中任意一个元素都是集合B中的元素就称集合A为集合B的子集记作A ⊆ B (或 B ⊇ A)。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-2-02",
"name": "集合相等",
"type": "概念",
"definition": "如果集合A的任何一个元素都是集合B的元素同时集合B的任何一个元素都是集合A的元素那么集合A与集合B相等记作A=B。即 A ⊆ B 且 B ⊆ A。",
"prerequisite": [
"K1-2-01"
]
},
{
"id": "K1-2-03",
"name": "真子集",
"type": "概念",
"definition": "如果集合A ⊆ B但存在元素x ∈ B且x ∉ A就称集合A是集合B的真子集记作A ⊊ B。",
"prerequisite": [
"K1-2-01"
]
},
{
"id": "K1-2-04",
"name": "空集",
"type": "概念",
"definition": "不含任何元素的集合叫做空集,记为∅,并规定:空集是任何集合的子集。",
"prerequisite": [
"K1-2-01"
]
},
{
"id": "K1-3-01",
"name": "并集",
"type": "概念",
"definition": "由所有属于集合A或属于集合B的元素组成的集合称为集合A与B的并集记作A B。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-3-02",
"name": "交集",
"type": "概念",
"definition": "由所有属于集合A且属于集合B的元素组成的集合称为集合A与B的交集记作A ∩ B。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-3-03",
"name": "全集",
"type": "概念",
"definition": "如果一个集合含有所研究问题中涉及的所有元素那么就称这个集合为全集通常记作U。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K1-3-04",
"name": "补集",
"type": "概念",
"definition": "对于一个集合A由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集简称为集合A的补集记作C_U A。",
"prerequisite": [
"K1-3-03"
]
},
{
"id": "K1-3-05",
"name": "有限集元素个数公式",
"type": "公式",
"definition": "对任意两个有限集合 A, B, 有 card(A B) = card(A) + card(B) - card(A ∩ B)。",
"prerequisite": [
"K1-3-01",
"K1-3-02"
]
},
{
"id": "K1-4-01",
"name": "命题",
"type": "概念",
"definition": "用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。",
"prerequisite": []
},
{
"id": "K1-4-02",
"name": "充分条件",
"type": "概念",
"definition": "如果“若p则q”为真命题p ⇒ q则p是q的充分条件。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-4-03",
"name": "必要条件",
"type": "概念",
"definition": "如果“若p则q”为真命题p ⇒ q则q是p的必要条件。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-4-04",
"name": "充要条件",
"type": "概念",
"definition": "如果“若p则q”和它的逆命题“若q则p”均为真命题p ⇔ q则p是q的充分必要条件简称充要条件。",
"prerequisite": [
"K1-4-02",
"K1-4-03"
]
},
{
"id": "K1-5-01",
"name": "全称量词",
"type": "概念",
"definition": "短语“所有的”、“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-5-02",
"name": "全称量词命题",
"type": "概念",
"definition": "含有全称量词的命题,叫做全称量词命题。形式为 ∀x ∈ M, p(x)。",
"prerequisite": [
"K1-5-01"
]
},
{
"id": "K1-5-03",
"name": "存在量词",
"type": "概念",
"definition": "短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示。",
"prerequisite": [
"K1-4-01"
]
},
{
"id": "K1-5-04",
"name": "存在量词命题",
"type": "概念",
"definition": "含有存在量词的命题,叫做存在量词命题。形式为 ∃x ∈ M, p(x)。",
"prerequisite": [
"K1-5-03"
]
},
{
"id": "K1-5-05",
"name": "全称量词命题的否定",
"type": "规则",
"definition": "全称量词命题 ∀x ∈ M, p(x) 的否定是存在量词命题 ∃x ∈ M, ¬p(x)。",
"prerequisite": [
"K1-5-02",
"K1-5-04"
]
},
{
"id": "K1-5-06",
"name": "存在量词命题的否定",
"type": "规则",
"definition": "存在量词命题 ∃x ∈ M, p(x) 的否定是全称量词命题 ∀x ∈ M, ¬p(x)。",
"prerequisite": [
"K1-5-02",
"K1-5-04"
]
},
{
"id": "K2-1-01",
"name": "不等式性质",
"type": "定理",
"definition": "不等式的基本性质,包括对称性、传递性、加法法则、乘法法则(分正数和负数两种情况)、同向不等式相加、同向同正不等式相乘、开方法则。",
"prerequisite": []
},
{
"id": "K2-2-01",
"name": "基本不等式",
"type": "定理",
"definition": "对任意两个正数a, b有 (a+b)/2 ≥ √ab当且仅当 a=b 时等号成立。即两个正数的算术平均数不小于它们的几何平均数。",
"prerequisite": [
"K2-1-01"
]
},
{
"id": "K2-3-01",
"name": "一元二次不等式",
"type": "概念",
"definition": "含有一个未知数并且未知数的最高次数是2的不等式如 ax^2+bx+c>0 或 ax^2+bx+c<0 (a≠0)。",
"prerequisite": []
},
{
"id": "K3-1-1-01",
"name": "函数",
"type": "概念",
"definition": "设A, B是非空的实数集如果对于集合A中的任意一个数x按照某种确定的对应关系f在集合B中都有唯一确定的数y和它对应那么就称f: A -> B为从集合A到集合B的一个函数记作 y=f(x), x∈A。",
"prerequisite": [
"K1-1-01"
]
},
{
"id": "K3-1-1-02",
"name": "定义域",
"type": "概念",
"definition": "函数自变量x的取值范围A叫做函数的定义域。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-1-1-03",
"name": "值域",
"type": "概念",
"definition": "函数值的集合 {f(x)|x∈A} 叫做函数的值域。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-1-2-01",
"name": "函数的表示法",
"type": "概念",
"definition": "表示函数关系的方法,主要有解析法、列表法、图象法。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-1-2-02",
"name": "分段函数",
"type": "概念",
"definition": "在定义域的不同部分,有不同的对应关系来表示的函数。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-2-1-01",
"name": "函数的单调性",
"type": "概念",
"definition": "描述函数值随自变量增大而增大(单调递增)或减小(单调递减)的性质。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-2-1-02",
"name": "函数的最大(小)值",
"type": "概念",
"definition": "函数在其定义域上所有函数值中的最大值或最小值。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-2-2-01",
"name": "函数的奇偶性",
"type": "概念",
"definition": "函数的图象关于y轴对称偶函数或关于原点对称奇函数的性质。偶函数满足f(-x)=f(x)奇函数满足f(-x)=-f(x)。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K3-3-01",
"name": "幂函数",
"type": "概念",
"definition": "形如 y=x^α (α是常数) 的函数称为幂函数其中x是自变量。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K4-1-1-01",
"name": "n次方根",
"type": "概念",
"definition": "如果x^n = a那么x叫做a的n次方根其中n>1且n∈N*。",
"prerequisite": []
},
{
"id": "K4-1-1-02",
"name": "分数指数幂",
"type": "概念",
"definition": "规定a^(m/n) = n√a^m (a>0, m, n∈N*, n>1) 和 a^(-m/n) = 1/a^(m/n) (a>0, m, n∈N*, n>1)。",
"prerequisite": [
"K4-1-1-01"
]
},
{
"id": "K4-1-2-01",
"name": "实数指数幂",
"type": "概念",
"definition": "将指数的取值范围从有理数推广到实数。无理数指数幂a^α (a>0) 是一个确定的实数。",
"prerequisite": [
"K4-1-1-02"
]
},
{
"id": "K4-2-1-01",
"name": "指数函数",
"type": "概念",
"definition": "函数 y=a^x (a>0, 且a≠1) 叫做指数函数其中x是自变量定义域是R。",
"prerequisite": [
"K4-1-2-01",
"K3-1-1-01"
]
},
{
"id": "K4-2-2-01",
"name": "指数函数的图像与性质",
"type": "定理",
"definition": "当a>1时指数函数是增函数当0<a<1时指数函数是减函数。图像都过点(0,1),值域为(0, +∞)。",
"prerequisite": [
"K4-2-1-01"
]
},
{
"id": "K4-3-1-01",
"name": "对数",
"type": "概念",
"definition": "如果 a^x=N (a>0, 且a≠1)那么数x叫做以a为底N的对数记作x=log_a(N)。",
"prerequisite": [
"K4-1-2-01"
]
},
{
"id": "K4-3-2-01",
"name": "对数的运算法则",
"type": "公式",
"definition": "log_a(MN) = log_a(M) + log_a(N); log_a(M/N) = log_a(M) - log_a(N); log_a(M^n) = n*log_a(M)。",
"prerequisite": [
"K4-3-1-01"
]
},
{
"id": "K4-3-2-02",
"name": "换底公式",
"type": "公式",
"definition": "log_a(b) = log_c(b) / log_c(a) (a>0, a≠1; c>0, c≠1; b>0)。",
"prerequisite": [
"K4-3-1-01"
]
},
{
"id": "K4-4-1-01",
"name": "对数函数",
"type": "概念",
"definition": "函数 y = log_a(x) (a>0, 且a≠1) 叫做对数函数其中x是自变量定义域是(0, +∞)。",
"prerequisite": [
"K4-3-1-01",
"K3-1-1-01"
]
},
{
"id": "K4-4-2-01",
"name": "对数函数的图像与性质",
"type": "定理",
"definition": "当a>1时对数函数是增函数当0<a<1时对数函数是减函数。图像都过点(1,0)值域为R。",
"prerequisite": [
"K4-4-1-01"
]
},
{
"id": "K4-4-2-02",
"name": "反函数",
"type": "概念",
"definition": "指数函数y=a^x与对数函数y=log_a(x)互为反函数它们的图像关于直线y=x对称。",
"prerequisite": [
"K4-2-1-01",
"K4-4-1-01"
]
},
{
"id": "K4-5-1-01",
"name": "函数零点",
"type": "概念",
"definition": "对于函数 y=f(x)我们把使f(x)=0的实数x叫做函数y=f(x)的零点。",
"prerequisite": [
"K3-1-1-01"
]
},
{
"id": "K4-5-1-02",
"name": "函数零点存在定理",
"type": "定理",
"definition": "如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线且有f(a)f(b)<0那么函数y=f(x)在区间(a,b)内至少有一个零点。",
"prerequisite": [
"K4-5-1-01"
]
},
{
"id": "K5-1-1-01",
"name": "任意角",
"type": "概念",
"definition": "角可以看成一条射线绕着它的端点旋转所形成的图形。按逆时针方向旋转形成的角叫正角,顺时针方向的叫负角,不旋转为零角。",
"prerequisite": []
},
{
"id": "K5-1-1-02",
"name": "象限角",
"type": "概念",
"definition": "在直角坐标系中使角的顶点与原点重合始边与x轴非负半轴重合角的终边在第几象限就说这个角是第几象限角。",
"prerequisite": [
"K5-1-1-01"
]
},
{
"id": "K5-1-1-03",
"name": "终边相同的角",
"type": "定理",
"definition": "所有与角α终边相同的角连同角α在内可构成一个集合S = {β | β = α + k * 360°, k ∈ Z}。",
"prerequisite": [
"K5-1-1-01"
]
},
{
"id": "K5-1-2-01",
"name": "弧度制",
"type": "概念",
"definition": "长度等于半径长的圆弧所对的圆心角叫做1弧度的角。",
"prerequisite": []
},
{
"id": "K5-1-2-02",
"name": "角度制与弧度制的换算",
"type": "公式",
"definition": "180° = π rad. 由此可得 1° = π/180 rad, 1 rad = (180/π)°.",
"prerequisite": [
"K5-1-2-01"
]
},
{
"id": "K5-1-2-03",
"name": "扇形弧长与面积公式(弧度制)",
"type": "公式",
"definition": "设扇形半径为R圆心角为α rad弧长为l面积为S。则 l = αR, S = (1/2)αR^2 = (1/2)lR。",
"prerequisite": [
"K5-1-2-01"
]
},
{
"id": "K5-2-1-01",
"name": "三角函数定义",
"type": "概念",
"definition": "设α是一个任意角它的终边与单位圆相交于点P(x,y)。则sinα=y, cosα=x, tanα=y/x (x≠0)。",
"prerequisite": [
"K5-1-1-01"
]
},
{
"id": "K5-2-1-02",
"name": "三角函数在各象限的符号",
"type": "定理",
"definition": "第一象限全为正;第二象限正弦为正;第三象限正切为正;第四象限余弦为正。",
"prerequisite": [
"K5-2-1-01"
]
},
{
"id": "K5-2-2-01",
"name": "同角三角函数的基本关系",
"type": "公式",
"definition": "sin²α + cos²α = 1; tanα = sinα / cosα。",
"prerequisite": [
"K5-2-1-01"
]
},
{
"id": "K5-3-01",
"name": "诱导公式",
"type": "公式",
"definition": "终边相同的角的同一三角函数的值相等。sin(α+2kπ)=sinα, cos(α+2kπ)=cosα, tan(α+2kπ)=tanα, (k∈Z)。以及其他关于π±α, -α, π/2±α, 3π/2±α的变换公式。",
"prerequisite": [
"K5-2-1-01"
]
},
{
"id": "K5-4-1-01",
"name": "正弦函数与余弦函数的图象",
"type": "概念",
"definition": "正弦函数的图象叫正弦曲线,余弦函数的图象叫余弦曲线,都是“波浪起伏”的连续光滑曲线。",
"prerequisite": [
"K5-2-1-01"
]
},
{
"id": "K5-4-2-01",
"name": "周期函数",
"type": "概念",
"definition": "设函数f(x)的定义域为D如果存在一个非零常数T使得对每一个x∈D都有x+T∈D且f(x+T)=f(x)那么函数f(x)就叫做周期函数T叫做这个函数的周期。",
"prarameters": [
"K3-1-1-01"
]
},
{
"id": "K5-4-2-02",
"name": "正弦函数、余弦函数的性质",
"type": "定理",
"definition": "定义域为R值域为[-1,1]最小正周期为2π。正弦函数是奇函数余弦函数是偶函数。在特定区间内具有单调性。",
"prerequisite": [
"K5-4-1-01",
"K5-4-2-01",
"K3-2-1-01",
"K3-2-2-01"
]
},
{
"id": "K5-4-3-01",
"name": "正切函数的图象与性质",
"type": "定理",
"definition": "定义域为{x|x≠π/2+kπ, k∈Z}值域为R最小正周期为π是奇函数。在每个开区间(-π/2+kπ, π/2+kπ)上单调递增。",
"prerequisite": [
"K5-2-1-01",
"K5-4-2-01",
"K3-2-1-01",
"K3-2-2-01"
]
},
{
"id": "K5-5-1-01",
"name": "两角和与差的三角函数公式",
"type": "公式",
"definition": "cos(α±β) = cosαcosβ ∓ sinαsinβ; sin(α±β) = sinαcosβ ± cosαsinβ; tan(α±β) = (tanα ± tanβ) / (1 ∓ tanαtanβ).",
"prerequisite": [
"K5-2-1-01"
]
},
{
"id": "K5-5-3-01",
"name": "二倍角公式",
"type": "公式",
"definition": "sin(2α)=2sinαcosα; cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α; tan(2α)=2tanα/(1-tan²α).",
"prerequisite": [
"K5-5-1-01"
]
},
{
"id": "K5-6-01",
"name": "函数y=Asin(ωx+φ)的图象",
"type": "概念",
"definition": "由正弦曲线y=sinx经过平移和伸缩变换得到。A是振幅T=2π/ω是周期f=1/T是频率ωx+φ是相位,φ是初相。",
"prerequisite": [
"K5-4-1-01"
]
}
],
"methods": [
{
"id": "M2-3-01",
"name": "一元二次不等式求解",
"type": "解题方法",
"steps": [
"将不等式化为 ax^2+bx+c>0 (或<0) 且 a>0 的形式。",
"计算判别式 Δ = b^2-4ac。",
"根据Δ的符号判断对应方程 ax^2+bx+c=0 的根的情况。",
"结合二次函数 y=ax^2+bx+c 的图象,确定不等式的解集。"
],
"required_knowledge": [
"K2-3-01"
]
},
{
"id": "M3-2-01",
"name": "函数单调性的证明方法(定义法)",
"type": "证明方法",
"steps": [
"设x1, x2是区间I内的任意两个值且x1 < x2。",
"作差 f(x1) - f(x2)。",
"对差式进行变形,通常是因式分解、配方等。",
"判断差 f(x1) - f(x2) 的符号。",
"根据定义得出结论若f(x1) < f(x2)则函数在I上单调递增若f(x1) > f(x2)则函数在I上单调递-减。"
],
"required_knowledge": [
"K3-2-1-01"
]
},
{
"id": "M3-2-02",
"name": "函数奇偶性的判断方法",
"type": "解题方法",
"steps": [
"首先确定函数的定义域是否关于原点对称。",
"计算f(-x)的表达式。",
"比较f(-x)与f(x)的关系如果f(-x)=f(x)则是偶函数如果f(-x)=-f(x),则是奇函数;否则为非奇非偶函数。"
],
"required_knowledge": [
"K3-2-2-01"
]
},
{
"id": "M4-5-01",
"name": "二分法求方程近似解",
"type": "解题方法",
"steps": [
"确定零点所在的初始区间[a,b]验证f(a)f(b)<0。",
"求区间(a,b)的中点c。",
"计算f(c)。若f(c)=0则c是零点若f(a)f(c)<0则令b=c若f(c)f(b)<0则令a=c。",
"判断区间长度是否小于给定的精确度ε。若|a-b|<ε则得到近似解否则重复步骤2-4。"
],
"required_knowledge": [
"K4-5-1-01",
"K4-5-1-02"
]
},
{
"id": "M5-6-01",
"name": "五点法画正弦/余弦函数简图",
"type": "解题方法",
"steps": [
"令 z = ωx+φ。",
"找出z取 0, π/2, π, 3π/2, 2π 时对应的五个关键点。",
"计算这五个关键点对应的x值。",
"计算这五个关键点对应的y值。",
"在坐标系中描出这五个点,并用光滑的曲线连接起来。"
],
"required_knowledge": [
"K5-4-1-01",
"K5-6-01"
]
},
{
"id": "M5-6-02",
"name": "由y=sinx图像得到y=Asin(ωx+φ)图像的变换步骤",
"type": "解题方法",
"steps": [
"相位变换将y=sinx的图像向左(φ>0)或向右(φ<0)平移|φ|个单位得到y=sin(x+φ)的图像。",
"周期变换将y=sin(x+φ)的图像上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的1/ω倍得到y=sin(ωx+φ)的图像。",
"振幅变换将y=sin(ωx+φ)的图像上所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍得到y=Asin(ωx+φ)的图像。"
],
"required_knowledge": [
"K5-6-01"
]
}
],
"problems": [
{
"id": "T1-1-E01",
"type": "例题",
"content": "用列举法表示下列集合:(1) 小于10的所有自然数组成的集合(2) 方程x²=x的所有实数根组成的集合。",
"knowledge": [
"K1-1-05",
"K1-1-06"
],
"methods": [
"M1-1-02"
]
},
{
"id": "T1-1-E02",
"type": "例题",
"content": "试分别用描述法和列举法表示下列集合: (1) 方程 x²-2=0 的所有实数根组成的集合 A; (2) 由大于 10 且小于 20 的所有整数组成的集合 B.",
"knowledge": [
"K1-1-06",
"K1-1-07"
],
"methods": [
"M1-1-02",
"M1-1-03"
]
},
{
"id": "T1-2-E01",
"type": "例题",
"content": "写出集合 {a, b} 的所有子集,并指出哪些是它的真子集。",
"knowledge": [
"K1-2-01",
"K1-2-03",
"K1-2-04"
],
"methods": []
},
{
"id": "T1-2-E02",
"type": "例题",
"content": "判断下列各题中集合 A 是否为集合 B 的子集,并说明理由:(1) A={1, 2, 3}, B={x|x 是 8 的约数}; (2) A={x|x 是长方形}, B={x|x 是两条对角线相等的平行四边形}。",
"knowledge": [
"K1-2-01"
],
"methods": [
"M1-2-01"
]
},
{
"id": "T1-3-E01",
"type": "例题",
"content": "设 A={4, 5, 6, 8}, B={3, 5, 7, 8}, 求 A B.",
"knowledge": [
"K1-3-01"
],
"methods": [
"M1-3-01"
]
},
{
"id": "T1-3-E02",
"type": "例题",
"content": "设集合 A={x | -1 < x < 2}, 集合 B={x | 1 < x < 3}, 求 A B.",
"knowledge": [
"K1-3-01"
],
"methods": [
"M1-3-01"
]
},
{
"id": "T1-3-E03",
"type": "例题",
"content": "立德中学开运动会,设 A={x|x 是立德中学高一年级参加百米赛跑的同学}, B={x|x 是立德中学高一年级参加跳高比赛的同学}, 求 A ∩ B。",
"knowledge": [
"K1-3-02"
],
"methods": [
"M1-3-02"
]
},
{
"id": "T1-3-E04",
"type": "例题",
"content": "设平面内直线l1上点的集合为L1直线l2上点的集合为L2试用集合的运算表示l1, l2的位置关系。",
"knowledge": [
"K1-3-02",
"K1-2-04"
],
"methods": [
"M1-3-02"
]
},
{
"id": "T1-3-E05",
"type": "例题",
"content": "设 U = {x | x 是小于 9 的正整数}, A = {1, 2, 3}, B = {3, 4, 5, 6},求 C_U A, C_U B.",
"knowledge": [
"K1-3-04"
],
"methods": [
"M1-3-03"
]
},
{
"id": "T1-3-E06",
"type": "例题",
"content": "设全集 U = {x | x 是三角形}, A = {x | x 是锐角三角形}, B = {x | x 是钝角三角形},求 A ∩ B, C_U (A B).",
"knowledge": [
"K1-3-01",
"K1-3-02",
"K1-3-04"
],
"methods": [
"M1-3-01",
"M1-3-02",
"M1-3-03"
]
},
{
"id": "T1-4-E01",
"type": "例题",
"content": "下列“若 p, 则 q”形式的命题中, 哪些命题中的 p 是 q 的充分条件? (1) 若四边形的两组对角分别相等, 则这个四边形是平行四边形; (2) 若两个三角形的三边成比例, 则这两个三角形相似; (3) 若四边形为菱形, 则这个四边形的对角线互相垂直; (4) 若 x²=1, 则 x=1; (5) 若 a=b, 则 ac=bc; (6) 若 x, y 为无理数, 则 xy 为无理数.",
"knowledge": [
"K1-4-02"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T1-4-E02",
"type": "例题",
"content": "下列“若p则q”形式的命题中哪些命题中的q是p的必要条件(1) 若四边形为平行四边形,则这个四边形的两组对角分别相等;(2) 若两个三角形相似,则这两个三角形的三边成比例;(3) 若四边形的对角线互相垂直,则这个四边形是菱形;(4) 若x=1则x²=1(5) 若ac=bc则a=b(6) 若xy为无理数则x,y为无理数。",
"knowledge": [
"K1-4-03"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T1-4-E03",
"type": "例题",
"content": "下列各题中,哪些 p 是 q 的充要条件? (1) p: 四边形是正方形q: 四边形的对角线互相垂直且平分; (2) p: 两个三角形相似q: 两个三角形三边成比例; (3) p: xy>0q: x>0y>0; (4) p: x=1 是一元二次方程 ax²+bx+c=0 的一个根q: a+b+c=0 (a ≠ 0).",
"knowledge": [
"K1-4-04"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T1-4-E04",
"type": "例题",
"content": "已知☉O 的半径为r圆心O到直线l的距离为d。求证d=r是直线l与☉O相切的充要条件。",
"knowledge": [
"K1-4-04"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T1-5-E01",
"type": "例题",
"content": "判断下列全称量词命题的真假: (1) 所有的素数都是奇数; (2) ∀ x ∈ R, |x|+1 ≥ 1; (3) 对任意一个无理数 x, x² 也是无理数.",
"knowledge": [
"K1-5-02"
],
"methods": []
},
{
"id": "T1-5-E02",
"type": "例题",
"content": "判断下列存在量词命题的真假: (1) 有一个实数 x使 x²+2x+3=0; (2) 平面内存在两条相交直线垂直于同一条直线; (3) 有些平行四边形是菱形.",
"knowledge": [
"K1-5-04"
],
"methods": []
},
{
"id": "T1-5-E03",
"type": "例题",
"content": "写出下列全称量词命题的否定: (1) 所有能被3整除的整数都是奇数; (2) 每一个四边形的四个顶点在同一个圆上; (3) 对任意x ∈ Z, x²的个位数字不等于3.",
"knowledge": [
"K1-5-05"
],
"methods": []
},
{
"id": "T1-5-E04",
"type": "例题",
"content": "写出下列存在量词命题的否定: (1) ∃ x ∈ R, x+2 ≤ 0; (2) 有的三角形是等边三角形; (3) 有一个偶数是素数.",
"knowledge": [
"K1-5-06"
],
"methods": []
},
{
"id": "T1-5-E05",
"type": "例题",
"content": "写出下列命题的否定,并判断真假: (1) 任意两个等边三角形都相似; (2) ∃ x ∈ R, x²-x+1=0.",
"knowledge": [
"K1-5-05",
"K1-5-06"
],
"methods": []
},
{
"id": "T2-1-E01",
"type": "例题",
"content": "比较(x+2)(x+3)和(x+1)(x+4)的大小.",
"knowledge": [
"K2-1-01"
],
"methods": []
},
{
"id": "T2-1-E02",
"type": "例题",
"content": "已知 a>b>0, c<0,求证 c/a > c/b.",
"knowledge": [
"K2-1-01"
],
"methods": []
},
{
"id": "T2-2-E01",
"type": "例题",
"content": "已知 x>0, 求 x + 1/x 的最小值。",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-2-E02",
"type": "例题",
"content": "已知 x,y 都是正数,求证: (1) 如果积 xy 等于定值 P, 那么当 x=y 时,和 x+y 有最小值 2√P; (2) 如果和 x+y 等于定值 S, 那么当 x=y 时, 积 xy 有最大值 S²/4.",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-2-E03",
"type": "例题",
"content": "(1) 用篱笆围一个面积为100 m²的矩形菜园, 当这个矩形的边长为多少时, 所用篱笆最短? 最短篱笆的长度是多少? (2) 用一段长为36 m的篱笆围成一个矩形菜园, 当这个矩形的边长为多少时, 菜园的面积最大? 最大面积是多少?",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-2-E04",
"type": "例题",
"content": "某工厂要建造一个长方体形无盖贮水池,其容积为 4800 m³,深为 3 m.如果池底每平方米的造价为 150 元,池壁每平方米的造价为 120 元,那么怎样设计水池能使总造价最低?最低总造价是多少?",
"knowledge": [
"K2-2-01"
],
"methods": []
},
{
"id": "T2-3-E01",
"type": "例题",
"content": "求不等式 x²-5x+6>0 的解集.",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E02",
"type": "例题",
"content": "求不等式 9x²-6x+1>0 的解集.",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E03",
"type": "例题",
"content": "求不等式 -x²+2x-3>0 的解集.",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E04",
"type": "例题",
"content": "一家车辆制造厂引进了一条摩托车整车装配流水线, 这条流水线生产的摩托车数量 x (单位: 辆) 与创造的价值 y (单位: 元) 之间有如下的关系: y=-20x²+2200x. 若这家工厂希望在一个星期内利用这条流水线创收60000元以上, 则在一个星期内大约应该生产多少辆摩托车?",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T2-3-E05",
"type": "例题",
"content": "某种汽车在水泥路面上的刹车距离 s (单位m) 和汽车刹车前的车速 v (单位km/h) 之间有如下关系s=v/20+v²/180。在一次交通事故中测得这种车的刹车距离大于 39.5 m那么这辆汽车刹车前的车速至少为多少 (精确到 1 km/h)?",
"knowledge": [
"K2-3-01"
],
"methods": [
"M2-3-01"
]
},
{
"id": "T3-1-E01",
"type": "例题",
"content": "试构建一个问题情境,使其中的变量关系可以用解析式 y=x(10-x) 来描述.",
"knowledge": [
"K3-1-1-01",
"K3-1-1-02",
"K3-1-1-03"
],
"methods": []
},
{
"id": "T3-1-E02",
"type": "例题",
"content": "已知函数 f(x)=√(x+3) + 1/(x+2)(1) 求函数的定义域;(2) 求 f(-3), f(2/3) 的值;(3) 当 a ≥ 0 时,求 f(a), f(a-1) 的值。",
"knowledge": [
"K3-1-1-02"
],
"methods": []
},
{
"id": "T3-1-E03",
"type": "例题",
"content": "下列函数中哪个与函数 y=x 是同一个函数?(1) y=(√x)²; (2) u=∛(v³); (3) y=√x²; (4) m=n²/n.",
"knowledge": [
"K3-1-1-01",
"K3-1-1-02"
],
"methods": []
},
{
"id": "T3-1-E04",
"type": "例题",
"content": "某种笔记本的单价是5元, 买 x (x ∈ {1, 2, 3, 4, 5}) 个笔记本需要 y 元. 试用函数的三种表示法表示函数 y=f(x).",
"knowledge": [
"K3-1-2-01"
],
"methods": []
},
{
"id": "T3-1-E05",
"type": "例题",
"content": "画出函数y=|x|的图象.",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-1-E06",
"type": "例题",
"content": "给定函数 f(x)=x+1, g(x)=(x+1)², x ∈ R, 1. 在同一直角坐标系中画出函数 f(x), g(x) 的图象; 2. ∀ x ∈ R, 用 M(x) 表示 f(x), g(x) 中的最大者, 记为 M(x)=max{f(x), g(x)}. 请分别用图象法和解析法表示函数 M(x).",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-1-E07",
"type": "例题",
"content": "表3.1-4 是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表. 请你对这三位同学在高一学年的数学学习情况做一个分析.",
"knowledge": [
"K3-1-2-01"
],
"methods": []
},
{
"id": "T3-1-E08",
"type": "例题",
"content": "依法纳税是每个公民应尽的义务。根据2019年1月1日起的《中华人民共和国个人所得税法》规定个税税额 = 应纳税所得额 × 税率 - 速算扣除数。应纳税所得额 = 综合所得收入额 - 60000 - 专项扣除 - 专项附加扣除 - 其他扣除。税率表如文所示。 (1) 设全年应纳税所得额为t应缴纳个税税额为y求y=f(t),并画出图象; (2) 小王全年综合所得收入额为117600元社保公积金占收入额20%专项附加扣除9600元其他扣除560元求他全年应缴纳的个税。",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-2-E01",
"type": "例题",
"content": "根据定义,研究函数 f(x)=kx+b(k ≠ 0) 的单调性.",
"knowledge": [
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E02",
"type": "例题",
"content": "物理学中的玻意耳定律 p=k/V (k为正常数) 告诉我们,对于一定质量的气体,当其温度不变时,体积V减小,压强p将增大.试对此用函数的单调性证明.",
"knowledge": [
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E03",
"type": "例题",
"content": "根据定义证明函数 y=x + 1/x 在区间 (1, +∞) 上单调递增.",
"knowledge": [
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E04",
"type": "例题",
"content": "“菊花”烟花是最壮观的烟花之一, 制造时一般是期望在它达到最高点时爆裂. 如果烟花距地面的高度 h (单位: m) 与时间 t (单位: s) 之间的关系为 h(t)=-4.9t²+14.7t+18, 那么烟花冲出后什么时候是它爆裂的最佳时刻? 这时距地面的高度是多少 (精确到 1m)?",
"knowledge": [
"K3-2-1-02"
],
"methods": []
},
{
"id": "T3-2-E05",
"type": "例题",
"content": "已知函数 f(x) = 2/(x-1) (x ∈ [2, 6]), 求函数的最大值和最小值.",
"knowledge": [
"K3-2-1-01",
"K3-2-1-02"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-2-E06",
"type": "例题",
"content": "判断下列函数的奇偶性:(1) f(x)=x⁴; (2) f(x)=x⁵; (3) f(x)=x+1/x; (4) f(x)=1/x².",
"knowledge": [
"K3-2-2-01"
],
"methods": [
"M3-2-02"
]
},
{
"id": "T3-3-E01",
"type": "例题",
"content": "证明幂函数 f(x)=√x 是增函数。",
"knowledge": [
"K3-3-01",
"K3-2-1-01"
],
"methods": [
"M3-2-01"
]
},
{
"id": "T3-4-E01",
"type": "例题",
"content": "设小王的专项扣除比例、专项附加扣除金额、依法确定的其他扣除金额与3.1.2例8相同,全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为y(单位:元). (1) 求y关于x的函数解析式; (2) 如果小王全年的综合所得由117 600元增加到153 600元,那么他全年应缴纳多少综合所得个税?",
"knowledge": [
"K3-1-2-02"
],
"methods": []
},
{
"id": "T3-4-E02",
"type": "例题",
"content": "一辆汽车在某段路程中行驶的平均速率 v (单位: km/h) 与时间 t (单位: h) 的关系如图3.4-1 所示,(1) 求图3.4-1中阴影部分的面积并说明所求面积的实际含义; (2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km试建立行驶这段路程时汽车里程表读数 s (单位: km) 与时间 t 的函数解析式,并画出相应的图象.",
"knowledge": [
"K3-1-2-01",
"K3-1-2-02"
],
"methods": []
},
{
"id": "T4-1-E01",
"type": "例题",
"content": "求下列各式的值: (1) ³√((-8)³); (2) √((-10)²); (3) ⁴√((3-π)⁴); (4) √((a-b)²).",
"knowledge": [
"K4-1-1-01"
],
"methods": []
},
{
"id": "T4-1-E02",
"type": "例题",
"content": "求值: (1) 8^(2/3); (2) (16/81)^(-3/4)。",
"knowledge": [
"K4-1-1-02"
],
"methods": []
},
{
"id": "T4-1-E03",
"type": "例题",
"content": "用分数指数幂的形式表示并计算下列各式(其中a>0): (1) a² · ³√a²; (2) √(a ³√a)。",
"knowledge": [
"K4-1-1-02"
],
"methods": []
},
{
"id": "T4-1-E04",
"type": "例题",
"content": "计算下列各式(式中字母均是正数): (1) (2a^(2/3)b^(1/2))(-6a^(1/2)b^(1/3)) ÷ (-3a^(1/6)b^(5/6)); (2) (m^(1/4)n^(-3/8))^8; (3) (³√a² - √a) ÷ ⁴√a².",
"knowledge": [
"K4-1-1-02"
],
"methods": []
},
{
"id": "T4-2-E01",
"type": "例题",
"content": "已知指数函数 f(x)=a^x (a>0, 且 a≠1), 且 f(3)=π, 求 f(0), f(1), f(-3) 的值.",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-2-E02",
"type": "例题",
"content": "(1)在问题1中, 如果平均每位游客出游一次可给当地带来1000元(不含门票)的收入, A地景区的门票价格为150元, 比较这15年间 A, B两地旅游收入变化情况. (2)在问题2中, 某生物死亡10000年后, 它体内碳14的含量衰减为原来的百分之几?",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-2-E03",
"type": "例题",
"content": "比较下列各题中两个值的大小:(1) 1.7^2.5, 1.7^3; (2) 0.8^-√2, 0.8^-√3; (3) 1.7^0.3, 0.9^3.1.",
"knowledge": [
"K4-2-2-01"
],
"methods": []
},
{
"id": "T4-2-E04",
"type": "例题",
"content": "如图4.2-7, 某城市人口呈指数增长。 (1) 根据图象,估计该城市人口每翻一番所需的时间 (倍增期) (2) 该城市人口从80万人开始经过20年会增长到多少万人",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-3-E01",
"type": "例题",
"content": "把下列指数式化为对数式,对数式化为指数式:(1) 5⁴=625; (2) 2⁻⁶=1/64; (3) (1/3)ᵐ=5.73; (4) log₁/₂16 = -4; (5) lg 0.01 = -2; (6) ln 10 = n.",
"knowledge": [
"K4-3-1-01"
],
"methods": []
},
{
"id": "T4-3-E02",
"type": "例题",
"content": "求下列各式中 x 的值: (1) log₆₄ x = -2/3; (2) logₓ 8 = 6; (3) lg 100 = x; (4) -ln e² = x.",
"knowledge": [
"K4-3-1-01"
],
"methods": []
},
{
"id": "T4-3-E03",
"type": "例题",
"content": "求下列各式的值: (1) lg ⁵√100; (2) log₂(4⁷ × 2⁵).",
"knowledge": [
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-3-E04",
"type": "例题",
"content": "用 lnx, lny, lnz 表示 ln(x²√y / ³√z).",
"knowledge": [
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-3-E05",
"type": "例题",
"content": "地震时释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为 lgE=4.8+1.5M. 2011年3月11日,日本东北部海域发生里氏9.0级地震,它所释放出来的能量是2008年5月12日我国汶川发生里氏8.0级地震的多少倍(精确到1)?",
"knowledge": [
"K4-3-1-01",
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-4-E01",
"type": "例题",
"content": "求下列函数的定义域: (1) y=log₃x²; (2) y=logₐ(4-x) (a>0, 且 a≠1).",
"knowledge": [
"K4-4-1-01"
],
"methods": []
},
{
"id": "T4-4-E02",
"type": "例题",
"content": "假设某地初始物价为1每年以5%的增长率递增,经过 t 年后的物价为 w。 (1) 该地的物价经过几年后会翻一番? (2) 填写下表,并根据表中的数据,说明该地物价的变化规律。| 物价w | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 年数t | 0 | | | | | | | | | |",
"knowledge": [
"K4-4-1-01",
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-4-E03",
"type": "例题",
"content": "比较下列各题中两个值的大小: (1) log₂3.4, log₂8.5; (2) log₀.₃1.8, log₀.₃2.7; (3) logₐ5.1, logₐ5.9 (a>0, 且 a≠1).",
"knowledge": [
"K4-4-2-01"
],
"methods": []
},
{
"id": "T4-4-E04",
"type": "例题",
"content": "溶液酸碱度的测量。pH的计算公式为pH=-lg[H⁺],其中 [H⁺] 表示溶液中氢离子的浓度。 (1) 说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系; (2) 已知纯净水中氢离子的浓度为 [H⁺]=10⁻⁷摩尔/升计算纯净水的pH。",
"knowledge": [
"K4-4-2-01",
"K4-3-2-01"
],
"methods": []
},
{
"id": "T4-5-E01",
"type": "例题",
"content": "求方程 ln(x) + 2x - 6 = 0 的实数解的个数。",
"knowledge": [
"K4-5-1-01",
"K4-5-1-02",
"K3-2-1-01"
],
"methods": []
},
{
"id": "T4-5-E02",
"type": "例题",
"content": "借助信息技术,用二分法求方程 2^x+3x=7 的近似解(精确度为0.1).",
"knowledge": [
"K4-5-1-01"
],
"methods": [
"M4-5-01"
]
},
{
"id": "T4-5-E03",
"type": "例题",
"content": "使用马尔萨斯人口增长模型 y=y₀e^(rt) 解决以下问题1. 根据中国1950年(55196万)和1959年(67207万)的人口数据建立该期间的人口增长模型。2. 利用模型计算1951-1958年的人口并与实际数据比较。3. 预测中国人口达到13亿的时间。",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-5-E04",
"type": "例题",
"content": "2010年考古学家对良渚古城水利系统中一条水坝的建筑材料(草裹泥)上提取的草茎遗存进行碳14年代学检测,检测出碳14的残留量约为初始量的55.2%,能否以此推断此水坝大概是什么年代建成的?(碳14半衰期为5730年)",
"knowledge": [
"K4-2-1-01",
"K4-3-1-01"
],
"methods": []
},
{
"id": "T4-5-E05",
"type": "例题",
"content": "假设你有一笔资金用于投资, 现有三种投资方案供你选择, 这三种方案的回报如下: 方案一: 每天回报40元; 方案二: 第一天回报10元, 以后每天比前一天多回报10元; 方案三: 第一天回报0.4元, 以后每天的回报比前一天翻一番. 请问, 你会选择哪种投资方案?",
"knowledge": [
"K4-2-1-01"
],
"methods": []
},
{
"id": "T4-5-E06",
"type": "例题",
"content": "某公司为了实现1000万元利润的目标准备制定一个激励销售人员的奖励方案在销售利润达到10万元时按销售利润进行奖励且奖金y(万元)随销售利润x(万元)的增加而增加但奖金总数不超过5万元同时奖金不超过利润的25%。现有三个奖励模型y=0.25x y=log₇x+1 y=1.002^x其中哪个模型能符合公司的要求",
"knowledge": [
"K4-2-2-01",
"K4-4-2-01",
"K3-2-1-02"
],
"methods": []
},
{
"id": "T5-1-E01",
"type": "例题",
"content": "在0°到360°的范围内找出与-950°12'终边相同的角。",
"knowledge": [
"K5-1-1-03"
],
"methods": []
},
{
"id": "T5-1-E02",
"type": "例题",
"content": "写出终边在y轴上的角的集合S。",
"knowledge": [
"K5-1-1-02",
"K5-1-1-03"
],
"methods": []
},
{
"id": "T5-1-E03",
"type": "例题",
"content": "写出终边在直线 y=x 上的角的集合 S. S 中满足不等式 -360° ≤ β < 720° 的元素 β 有哪些?",
"knowledge": [
"K5-1-1-02",
"K5-1-1-03"
],
"methods": []
},
{
"id": "T5-1-E04",
"type": "例题",
"content": "按照下列要求,把 67°30' 化成弧度:(1) 精确值;(2) 精确到 0.001 的近似值。",
"knowledge": [
"K5-1-2-02"
],
"methods": []
},
{
"id": "T5-1-E05",
"type": "例题",
"content": "将 3.14 rad 换算成角度 (用度数表示, 精确到 0.001)。",
"knowledge": [
"K5-1-2-02"
],
"methods": []
},
{
"id": "T5-1-E06",
"type": "例题",
"content": "利用弧度制证明下列关于扇形的公式: (1) l=αR; (2) S=½αR²; (3) S=½lR.",
"knowledge": [
"K5-1-2-01",
"K5-1-2-03"
],
"methods": []
},
{
"id": "T5-2-E01",
"type": "例题",
"content": "求 5π/3 的正弦、余弦和正切值。",
"knowledge": [
"K5-2-1-01"
],
"methods": []
},
{
"id": "T5-2-E02",
"type": "例题",
"content": "设α是一个任意角它的终边上任意一点P(不与原点O重合)的坐标为(x,y)点P与原点的距离为r。求证sinα=y/rcosα=x/rtanα=y/x。",
"knowledge": [
"K5-2-1-01"
],
"methods": []
},
{
"id": "T5-2-E03",
"type": "例题",
"content": "求证: 角θ为第三象限角的充要条件是 {sinθ<0, tanθ>0}.",
"knowledge": [
"K1-4-04",
"K5-2-1-02"
],
"methods": [
"M1-4-01"
]
},
{
"id": "T5-2-E04",
"type": "例题",
"content": "确定下列三角函数值的符号,然后用计算工具验证: (1) cos 250°; (2) sin(-π/4); (3) tan(-672°); (4) tan 3π.",
"knowledge": [
"K5-2-1-02",
"K5-3-01"
],
"methods": []
},
{
"id": "T5-2-E05",
"type": "例题",
"content": "求下列三角函数值: (1) sin 1480°10' (精确到 0.001); (2) cos(9π/4); (3) tan(-11π/6).",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-2-E06",
"type": "例题",
"content": "已知 sin α = -3/5, 求 cos α, tan α 的值.",
"knowledge": [
"K5-2-2-01",
"K5-2-1-02"
],
"methods": []
},
{
"id": "T5-2-E07",
"type": "例题",
"content": "求证: cos(x)/(1 - sin(x)) = (1 + sin(x))/cos(x).",
"knowledge": [
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-3-E01",
"type": "例题",
"content": "利用公式求下列三角函数值: (1) cos 225°; (2) sin(8π/3); (3) sin(-16π/3); (4) tan(-2040°).",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E02",
"type": "例题",
"content": "化简 (cos(180°+α)sin(α+360°))/(tan(-α-180°)cos(-180°+α)).",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E03",
"type": "例题",
"content": "证明: (1) sin(3π/2 - α) = -cosα; (2) cos(3π/2 + α) = sinα.",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E04",
"type": "例题",
"content": "化简 sin(2π-α)cos(π+α)cos(π/2+α)cos(11π/2-α) / [cos(π-α)sin(3π-α)sin(-π-α)sin(9π/2+α)].",
"knowledge": [
"K5-3-01"
],
"methods": []
},
{
"id": "T5-3-E05",
"type": "例题",
"content": "已知 sin(53°-α)=1/5, 且 -270°<α<-90°, 求 sin(37°+α) 的值.",
"knowledge": [
"K5-3-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-4-E01",
"type": "例题",
"content": "画出下列函数的简图: (1) y=1+sin x, x∈[0, 2π]; (2) y=-cos x, x∈[0, 2π].",
"knowledge": [
"K5-4-1-01"
],
"methods": [
"M5-6-01"
]
},
{
"id": "T5-4-E02",
"type": "例题",
"content": "求下列函数的周期: (1) y=3sin x, x∈R; (2) y=cos 2x, x∈R; (3) y=2sin(x/2 - π/6), x∈R.",
"knowledge": [
"K5-4-2-01"
],
"methods": []
},
{
"id": "T5-4-E03",
"type": "例题",
"content": "下列函数有最大值、最小值吗? 如果有, 请写出取最大值、最小值时自变量 x 的集合, 并求出最大值、最小值. (1) y=cos x+1, x∈R; (2) y=-3sin 2x, x∈R.",
"knowledge": [
"K5-4-2-02"
],
"methods": []
},
{
"id": "T5-4-E04",
"type": "例题",
"content": "不通过求值,比较下列各组数的大小: (1) sin(-π/18) 与 sin(-π/10); (2) cos(-23π/5) 与 cos(-17π/4).",
"knowledge": [
"K5-4-2-02",
"K5-3-01"
],
"methods": []
},
{
"id": "T5-4-E05",
"type": "例题",
"content": "求函数 y=sin(x/2+π/3), x∈[-2π, 2π] 的单调递增区间.",
"knowledge": [
"K5-4-2-02"
],
"methods": []
},
{
"id": "T5-4-E06",
"type": "例题",
"content": "求函数 y=tan(π/2*x+π/3) 的定义域、周期及单调区间。",
"knowledge": [
"K5-4-3-01"
],
"methods": []
},
{
"id": "T5-5-E01",
"type": "例题",
"content": "利用公式 C(α-β) 证明:(1) cos(π/2 - α) = sinα; (2) cos(π-α) = -cosα.",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E02",
"type": "例题",
"content": "已知 sinα=4/5, α∈(π/2, π), cosβ=-5/13, β是第三象限角, 求 cos(α-β) 的值。",
"knowledge": [
"K5-5-1-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E03",
"type": "例题",
"content": "已知 sinα = -3/5α 是第四象限角,求 sin(π/4 - α), cos(π/4 + α), tan(α - π/4) 的值.",
"knowledge": [
"K5-5-1-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E04",
"type": "例题",
"content": "利用和(差)角公式计算下列各式的值: (1) sin72°cos42°-cos72°sin42°; (2) cos20°cos70°-sin20°sin70°; (3) (1+tan15°)/(1-tan15°).",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E05",
"type": "例题",
"content": "已知 sin2α=5/13, π/4 < α < π/2, 求 sin4α, cos4α, tan4α 的值.",
"knowledge": [
"K5-5-3-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E06",
"type": "例题",
"content": "在△ABC中cosA = 4/5, tanB = 2求 tan(2A+2B) 的值.",
"knowledge": [
"K5-5-1-01",
"K5-5-3-01",
"K5-2-2-01"
],
"methods": []
},
{
"id": "T5-5-E07",
"type": "例题",
"content": "试以 cosα 表示 sin²(α/2), cos²(α/2), tan²(α/2).",
"knowledge": [
"K5-5-3-01"
],
"methods": []
},
{
"id": "T5-5-E08",
"type": "例题",
"content": "求证: (1) sinαcosβ = 1/2[sin(α+β)+sin(α-β)]; (2) sinθ+sinφ = 2sin((θ+φ)/2)cos((θ-φ)/2).",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E09",
"type": "例题",
"content": "化简sin(x + π/3) + sin(x - π/3).",
"knowledge": [
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-5-E10",
"type": "例题",
"content": "如图,在 Rt△ABC 中∠C=90°, AC=2, ∠BAC=α, (0<α<π/3), 求矩形 ABCD 的面积 S 的最大值.",
"knowledge": [
"K5-5-3-01"
],
"methods": []
},
{
"id": "T5-6-E01",
"type": "例题",
"content": "画出函数 y=2sin(3x-π/6) 的简图。",
"knowledge": [
"K5-6-01"
],
"methods": [
"M5-6-01",
"M5-6-02"
]
},
{
"id": "T5-6-E02",
"type": "例题",
"content": "已知函数 y=sin(x-π/4) 的部分图象如图,则 A,B,C,D,E 各点的坐标分别为 A(π/4, 0), B(3π/4, 1), C(5π/4, 0), D(7π/4, -1), E(9π/4, 0)。",
"knowledge": [
"K5-6-01",
"K5-4-2-02"
],
"methods": [
"M5-6-01"
]
},
{
"id": "T5-6-E03",
"type": "例题",
"content": "在长为1m的细绳一端系上一个小球,以另一端为圆心在竖直平面内做圆周运动,小球的起始位置在最低点,经过ts后,小球转过的角度为θ=t+π/2(rad). (1)经过多少时间,小球到达最高点? (2)经过多少时间,小球的高度第一次达到0.5m?",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-6-E04",
"type": "例题",
"content": "摩天轮的半径为55m最高点距地面120m。摩天轮运行一周约需30min。在摩天轮上甲、乙两人从不同位置开始计时经过ts后甲、乙两人距离地面的高度分别为h_甲=65+55sin(πt/15 - π/2), h_乙=65+55sin(πt/15 + π/6)。求t为何值时两人距离地面的高度差最大",
"knowledge": [
"K5-6-01",
"K5-5-1-01"
],
"methods": []
},
{
"id": "T5-7-P1",
"type": "问题",
"content": "某个弹簧振子在完成一次全振动的过程中时间t(单位:s)与位移y(单位:mm)之间的对应数据如表5.7-1所示试根据这些数据确定这个振子的位移关于时间的函数解析式。",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-7-P2",
"type": "问题",
"content": "图5.7-2(1)是某次实验测得的交变电流i(单位:A)随时间t(单位:s)变化的图象。将测得的图象放大得到图5.7-2(2)。(1)求电流i随时间t变化的函数解析式;(2)当t=0, 1/600, 1/150, 7/600, 1/60时求电流i。",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-7-E01",
"type": "例题",
"content": "如图5.7-3, 某地一天从6~14时的温度变化曲线近似满足函数 y=Asin(ωx+φ)+b. 1. 求这一天6~14时的最大温差; 2. 写出这段曲线的函数解析式.",
"knowledge": [
"K5-6-01"
],
"methods": []
},
{
"id": "T5-7-E02",
"type": "例题",
"content": "海水受日月的引力在一定的时候发生涨落的现象叫潮。表5.7-2是某港口某天的时刻与水深关系的预报。 (1) 选用一个函数来近似描述这一天该港口的水深与时间的关系,给出整点时水深的近似数值。 (2) 一条货船的吃水深度为4m安全间隙1.5m,该船这一天何时能进入港口?在港口能待多久? (3) 某船吃水深度为4m安全间隙1.5m该船2:00开始卸货吃水深度以0.3m/h减少为了安全需在水深与船所需安全水深相等时刻前0.4h停止卸货并离港,问何时停止卸货离港?",
"knowledge": [
"K5-6-01"
],
"methods": []
}
]
}